Publications

Export 70 results:
Sort by: [ Author  (Asc)] Title Year
Filters: First Letter Of Title is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
A
Albuquerque G, Löwe T, Magnor M.  2011.  Synthetic Generation of High-dimensional Datasets. {IEEE} Transactions on Visualization and Computer Graphics {(TVCG,} Proc. Visualization / InfoVis). 17
Andrienko G, Andrienko N, Demar U, Dransch D, Dykes J, Fabrikant S, Jern M, Kraak M-J, Schumann H, Tominski C.  2010.  Space, Time, and Visual Analytics. International Journal Geographical Information Science. :pp.1577-1600.
Andrienko N, Andrienko G.  2010.  Spatial Generalization and Aggregation of Massive Movement Data. IEEE Transactions on Visualization and Computer Graphics (TVCG).
Andrienko N, Andrienko G, Barrett L, Dostie M, Henzi P.  2013.  Space Transformation for Understanding Group Movement. IEEE Transactions on Visualization and Computer Graphics (Proceedings IEEE VAST 2013). vol. 19(12)
Andrienko N, Andrienko G.  2011.  Spatial Generalization and Aggregation of Massive Movement Data. IEEE Transactions on Visualization and Computer Graphics (TVCG).
Andrienko G, Andrienko N, Demar U, Dransch D, Dykes J, Fabrikant S, Jern M.  2010.  Space and Time. Mastering the Information Age -- Solving Problems with Visual Analytics.
Andrienko G, Andrienko N, Hurter C, Rinzivillo S, Wrobel S.  2013.  Scalable Analysis of Movement Data for Extracting and Exploring Significant Places. IEEE Transactions on Visualization and Computer Graphics. v. 19(7):pp.1078-1094.
B
E
F
Fensky S, Held F, Rak M, Tönnies KD.  2015.  Spinal Canal Centerline Extraction in {MRI}. Proceedings of the 19th Medical Image Understanding and Analysis Conference. :144-149.
G
Günnemann S, Färber I, Mausbach T, Seidl T.  2014.  SMVC: Semi-Supervised Multi-View Clustering in Subspace Projections. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'14). 20:253-262.
Günnemann S, Färber I, Virochsiri K, Seidl T.  2012.  Subspace correlation clustering: finding locally correlated dimensions in subspace projections of the data. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'12). :352-360.
Günnemann S, Färber I, Raubach S, Seidl T.  2013.  Spectral Subspace Clustering for Graphs with Feature Vectors. Proceedings of the IEEE International Conference on Data Mining (ICDM 2013).